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Abstract-The problem of turbulent heat transfer in concentric annuli is analysed for the case in which 
there is a uniform heat flux at either annular surface. The solution is given for the thermal entrance region 
and the fully developed situation and may be extended by the principle of superposition to cases in whcih 
there are arbitrary axial variations in the wall heat flux at both annular surfaces. 

The solutions are given for radius ratios 2.88, 5625,9.37 and 50 with Reynolds numbers from 20000 to 
240000 and for Pr = 0.01,0.7 and 1000. There is good agreement with experimental results for annuli for 
Pr = 0.7 whilst some results for a radius ratio equal to 50 compare favourably with results for a circular 

tube for other Prandtl numbers. 
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NOMENCLATURE 

cross sectional area of annulus; 
ratio of rdJri; 
radius ratio r&i; 
specific heat at constant pressure ; 
annulus characteristic dimension 

2(r, - ri); 

temperature solution for heating at 
the inner wall ; 

non dimensional fluid velocity u/(z/p); 
bulk velocity l/A f u dA; 

fictitious velocity if spherical turbu- 
lent eddy ; 
axial distance ; 

temperature solution for heating at 
the outer wall ; 
heat-transfer coefficient ; 
Von KgrmAn’s constant in similarity 
hypothesis; 

non dimensional axial distance x/D ; 
radial distance from annulus wall ; 

Y JWlv. 

thermal conductivity; 
mixing length in Jenkins expression ; 
index in sublayer profile ; 
Nusselt number hD/k; 
Prandtl number pC,/k ; 
wall heat flux ; 
Reynolds number @Iv ; 
non dimensional radius r/(r, - ri); 

thermal diffusivity ; 

1 - Y’lY;; 
density ; 
shear stress ; 
viscosity; 
kinematic viscosity ; 
eddy diffusivity of momentum; 
eddy diffusivity of heat. 

radius ; 

TO JWP)IV ; 
temperature ; 

Subscripts 

6 inner ; 

0, outer ; 

395 

T, non dimensional temperature 

u, 
u+, 
% 
V’, 

fluid velocity; 
(t - ~,)l(@lk); 
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m, 
P* 
e, 
b. 

at position of m~imum velocity; 
at edge of sublayer; 
entrance value at x = 0; 
bulk value. 

THE IMPORTANCE of the thermal entrance region 
in turbulent heat transfer in ducts is well 
established and solutions to the problem have 
been given for the circular tube and parallel 
plate channel for various thermal boundary 
conditions. The annular con~guration is of 
great practical importance. Leung ef al. [lf 
have presented a solution for the fully developed 
case with uniform heat flux at the annular walls 
but a complete solution for the thermal entrance 
region with this boundary condition has not 
been given previously. 

In analysing such problems by use of the 
energy equation, it is necessary to have an 
accurate description of the turbulent velocity 
profile and eddy diffusivity variation in the duct. 
In the annulus there has been much experi- 
mental work carried out but conclusions about 
the velocity profile and eddy diffusivity have 
been rather conflicting. This is discussed by 
Quarmby [2]. The experimental results of [2] 
attempted to answer some of the questions 
raised by previous work. For example, it was 
shown that the turbulent velocity profile in 
annuli has both a radius ratio and a Reynolds 
number dependence. The radius of maximum 
velocity is not the same in turbulent flow as in 
laminar flow, nor may it be given in terms of the 
radius ratio only. 

An analysis of turbulent flow in concentric 
annuli, based on Von K&man’s similarity 
hypothesis, has been given by Quarmby [3], 
which is in good agreement with the experimental 
findings of [2]. This analysis is used in the 
present work to provide a solution for the 
thermal entrance region heat transfer problem 
in a concentric annulus for the boundary 
condition that there is a uniform heat flux at 
either annular surface. The asymptotic solution 
for large values of the axial distance along 

the duct gives results for the fully developed 
situation. Further, the principle of superposition 
allows the basic solution to be extended to give 
the solutions for cases in which there is any 
arbitrary axial variation of heat flux at the walls. 
Such cases of axial variation are of considerable 
practical interest. 

GENERAL ENERGY EQUATION 

The energy equation may be written 

if the assumptions are made of constant fluid 
properties and negligible axial conduction. It is 
further assumed that the turbulent velocity 
profile is fully developed at the entrance to the 
heated section and that the entering fluid tem- 
perature is uniform, t,. Equation (1) is made 
non-dimensional by use of 

and 

u,’ = u T = (t - t,) f 

so that 

For heating on the inner wall the tem~rature 
solution is denoted q = (t - r,)j(qiDili) and for 
the outer wall heated, correspondingly, To = 

0 - cJJw/~)* 
The solution of equation (2) may be expressed 

as the sum of a fully developed part, T,, and a 
developing part, T2. 

For heating on the inner wall Ti, is given by 
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where X4$,,/& has been evaluated from a simple with the boundary conditions that 
heat balance. The boundary conditions on 
equation (3) are 64, 0 

aR= 
at Ri (114 

aT,,__l 
aR- = 

at Ri (44 and 

and 

8% 0 

aR - 

at R, 

The solution of equation (3) is a function of R 
only SO that Ti, may be written 

Ti, = jj&& + G(R). (5) 

In a similar way, for T,, 

with 

aTo, -= 
ap + 

at R, 

and 

ax, o 
-= 

aR 
at Ri. 

(74 

(7b) 

The fully developed temperature for heating 
on the outer wall is thus 

T,, = $& + WR) (8) 

where H(R) is the solution of equation (6). 
For the developing case T,, a solution is 

found by separation of variables so that 

T, -2 C&“erp1-%x’(. (9) 

n=l 

The equation for the eigenfunctions, $J,, is 

84, o 

aR= at R, Ulb) 

The eigenconstants, C,, are determined from 
the Sturm-Liouiville condition and since T, = 
- Tl at x = 0, then 

"s" -u,'T,&,R dR 

c, = Ri R, 

J G4,ZRdR ’ 

(12) 

Since the boundary conditions, equation (1 l), 
are the same at each surface the I, are identical 
whether heating is at Ri or R, Only one set of 
1, need to be determined from equation (10). 
The eigenfunctions and constants for heating 
at the inner wall, 4. and C, are however not 
the same as those for heating at the outer wall, 
t+G, and D, since equation (10) and To and T are 
not symmetric with respect to the centre line 
of the annular gap. Accordingly the further set 
of eigenconstants, D,, need to be determined in 
order to evaluate To,. Thus T, is given by 

T, = C C,$,exp [- gx;1 (13) 

n=l 

T,, = % D,+,exp [- gxj (14) 

n= I 

where C, are calculated from equation (12) with 
Tl = T and D, from equation (12) with Tl = 
TO,. 

NUSSELT NUMBER 

When the temperatures T and T, are de- 
termined, the Nusselt numbers may be calcu- 
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lated as follows. For the inner wall, 

hD qi D ___ 
NUi=T=ti_t,k. (15) 

If heating is only at Ri then equation (15) 
becomes 

Nui = 
1 

(W 

Since the bulk temperature, defined as 

“s’ utr dr 
r, = +- 

1 urdr 

(17) 

Similarly for heating at R, only 

1 
Nu, = _. 

l!Z(R),[, -2 D,exp (-~.~-,] 

n=l 

(19 

If there are uniform heat fluxes at each side, 
which may be arbitrarily different, the Nusselt 
numbers may be calculated from the principle of 
superposition. Such cases for the parallel plate 
channel were given by Hatton and Quarmby [4]. 
Thus Nui with constant but arbitrary values of 
qi and q. at Ri and R, respectively becomes 

Nui = 

G(R),[1 -xCnexp(-$x)l -k[H(R)i+rD,,(t,!/JieXp c-$xj] (20) 

Nu, = 

H(R)i~-~D~exp(-~x’~]-q~i~(R)O+~C~(&,)Oexp(-~x~]’ (21) 

n= 1 

may also be regarded as the sum of two parts. 
So that for the fully developed part the dif- 
ference between Ti and Tib is G(R), whilst for 
the developing part it is easily seen from 
equation (lo), that 7”6 is zero. Further, in 
calculating C, the starting value of (6, at Ri is 
set equal to -G(R), and equation (16) may 
thus be simplified to 

Nui = 

G(R), [I -2 Clexp (-2x’)]’ 

n=l 

In equations (20) and (21) the sign convention 
on heat flux is that it is taken positive in the 
positive direction of R. It should be noted that 
the (&), are not equal to G(R), and need to be 
tabulated, as do the values of (~n)i, if NUi and 
Nu, for arbitrary values of heat flux ratio are 
required. 

DESCRIPTION OF THE VELOCITY PROFILE AND 
EDDY DIFFUSIVITY 

The value of the solution to the present 
problem is much dependent on the accuracy of 
the equations which are used to describe the 
velocity profile and eddy diffusivity. The turbu- 
lent velocity profile in concentric annuli may be 
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formulated by an analysis given by [3]. In this 
analysis the flow is divided into an inner 
velocity profile, for ri < r < r, and an outer 
profile, r, > r > r,. In each part the region of 
flow close to the wall, up to y:, is analysed from 
Deissler’s [5] description of the eddy diffusivity. 
In the main stream, y: < y + < y,‘, the eddy 
diffusivity is that given by [l], whilst the 
velocity profile is given by the analysis of [3]. 

Thus for the inner profile for 0 < y,? < yl 

%I - = n%‘y [l - exp(-n’u’y’)] (22a) 
V 

and 

dui+ TITi 

dy; - 1 + n’u’y’ [l - exp(-n’u+y’)] 
(22b) 

with 

For 

u+ = 0 at y+ = 0. 

YZ < Y+ < Yf 

I = -K(du,VdY’)2 d2uf 

dy; ’ [z/T~ - du’/dy’]’ 
(23) 

and the ordinate and gradient of UT are matched 
between equations (22b) and (23). In the outer 
profile, for 0 < y,’ < y5 

- = n2u,+y,+ [l - exp(-n2u,+y,+)] 
V 

(24a) 

and 

W eo 
dy,+ - 1 + n2u,+y,+ [l - exp(-n2u,+y,f)] 

(24b) 

whilst for y; < y,’ < y& 

d2u+ - K(du,+/dy,+)’ 

D = [r/z, - du,+/dy,+]” dYZ2 

It has been shown [3] that K may be taken as 
0.36 whilst n2 and y: are given by Fig. 1. As an 
example of the correctness of this analysis, 
Fig. 2 shows a comparison of its predictions 
with the experimental results of [2] for radius 
ratios 2.88 and 9.37. 

urn’ 
104 

5 “‘1 1 
IO4 

0 006 
105 106 

Re 

FIG. 1. Relationship between the parameters of the turbulent 
velocity profile. 

It is possible to derive the eddy diffusivity 
for y: <y+ <y,‘, from the velocity profile 
given above. However, the resulting eddy 
diffusivity of momentum at y: is zero. The eddy 
diffusivity of heat, Ed, is obtained from E, by 
a multiplicative factor, the ratio s&s, With the 
present boundary conditions, however, heat is 
being transferred across y,’ accordingly, a zero 
value for sH at v, is not acceptable. 

Both [l] and [4] successfully used descrip- 
tions of the eddy diffusivity which did not 
strictly follow from the velocity profile but which 
avoided a zero value of E, at y,‘. Similarly, E, 

is described here by an equation for the inner 
profile 

(25) Em 
- = ; 
V 

The boundary conditions on u,’ are similar 
to those on UT. 

In integrating the equations of the velocity 
profile. values must be given to rr2, y: and K. 

X [I +0-6J~)Bi(l - Pi)] 
’ X [1-(I-~)li.]-Ci (26) 
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Re 

bG2.88 

FIG. 2. Turbulent velocity profiles for radius ratios b = 2.88 
and 9.37. 
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b 22615 X 22950 

c 46865 a 46800 

d 80464 l 80000 

- IO 

t-5 
5000 

and for the outer profile 

x [l + 0#6&(1 - a:,] - C,. 

Equations (26) and (27) with Ci and C, both 
zero, were given by [ 11. The constants have been 
introduced to eliminate the discontinuity which 
would otherwise occur in E,,, at y:. Thus if the 

(27) difference at yz between equations (22a) and 
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Expi Ref [2] 
0 Re=88600 
+ Re=51 900 
A Re=23250 

Theory 

- Equations (261 and (27) 

0 0.25 0,5 0.75 IO 

FIG. 3. Eddy diffusivity in concentric annuli b = 5.62. 

(26) with Ci = 0 is 6(s,Ji then 

c, = 4M_YLi - Y+) 
I 

(Yf - YL> 

and similarly 

C = %PMY~ - Y’) 
0 

6Go -YG) . 

The agreement between these expressions 
and some of the experimental results of [2] 
is shown in Fig. 3. It has been shown [l] that 
this description of E, holds for b up to 19 and 
Reynolds numbers of 700000. 

It is possible to generate the velocity profile 
from the eddy diffusivity expressions given 
above by use of the equation, 

(28) 

However, the velocity profiles thus derived 
do not give good agreement with experiment. 

Also, the velocity profile derived from the eddy 
diffusivity was considered by Leung et al. [l] to 
be too algebraicly complex to use in treating 
the fully developed heat transfer situation. 
Calculations for this case by the present authors, 
[6], showed that the use of the present velocity 
profile and eddy diffusivity gives results for 
for Reynolds numbers less than 30000 which 
are in better agreement with experiment than 
the results of Leung et al. These authors found 
their analysis disagreed with experiment about 
10-15 %. The results of reference [6] are in good 
agreement with experiment and this is due to 
the improvement in the description of the 
velocity profile since the eddy diffusivity is the 
same in both analyses. To use the velocity 
profile derived from the eddy diffusivity would 
clearly be even less satisfactory than the assump- 
tion of Leung et al. and would certainly lead 
to a disagreement with experiment of at least 
the same order as that mentioned Therefore, 
the velocity profile and eddy diffusivity are 
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given by the expressions which provide the r,? since it is easily shown from the expressions 
best agreement with experiment, although, they for shear stress in annuli, Knudsen and Katz 
are not consistent according to equation (28). [7], that 
This approach is amply justified by the present 
results as well as those of [l], [4] and [6]. YZo = (30) 

The eddy diffusivity of heat, eH, which is ( > 
1-X rt 

required in equation (6) is obtained from E, by a - 1 b(a2 - 1) 
the expression for their ratio due to Jenkins Y,‘, = b (b2 _ o2) ro’ (31) 

[8]. This may be expressed as: 

En - = Pr 
&I 

1 -$+fz$[l -exp (-%)I 

II=1 

(29) 

and it has been evaluated by Leung et al. [ 1). The 
relationship is shown in Fig. 4 for Pr = 0.01, 
0.7 and 1000. 

2.8 

Pm/” 

FIG. 4. Relationship between eddy diffusivity of heat and 
momentum. 

CALCULATIONS AND RESULTS 

In integrating the equations of the velocity 
profile and temperature, ri is chosen as the 
basic parameter for given values of the radius 
ratio. The choice of t-0’ determines yz,,, y; and 

r,=ga2-1) + 
I b (b2 - a’) ” ’ (32) 

Also, the Reynolds number is determined by 
the choice of ri since Re = u,DJv becomes 

Re = u’(y’ + r+)dy,t 

Y&o 

4 (r,’ - y,+)dy,f 1 
The relationship between r,’ and Re for the 

radius ratios b = 2.88, 5.67, 9.37 and 50 is 
given in Table 1 and shown in Fig. 5. The ratios 
were taken to agree with the results of [2] or, 
for b = 50, since a comparison may be made with 
results for a circular tube. The eigenvalues and 
constants C, and D, for b = 2.88, 5.67 and 9.37 
are given in Table 2 for Pr = 0.01 and 1000 for 
various Reynolds numbers. Table 3 gives those 
for Pr = 0.7 together with (4.), and ($.)* The 
results required for calculating the fully de- 
veloped heat transfer situation namely G(R), 

(33) 
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Table 1. Relatio~hiF between rf: and Rey~lds number 

=n _. 

-- b = 1.05 2.88 i.625 9.37 50 
____~ .-_I__--- 

ro’ Re ro’ Re r,’ Re rr; Re rb” Re 
l_-_l-.-- --- -- 

6000 9050 915 20363 1020 30226 325 9243 295 9088 
11100 17530 2800 7303.5 2000 65116 1280 42945 1000 36310 
29600 52900 4400 122275 3550 125267 2200 80016 2210 89640 
5OOQO 96650 5900 170415 6250 236622 4000 157789 2500 103 140 

100000 212200 7500 223 200 7300 290900 5650 231996 5ooo 225 600 
150000 334600 10000 308400 10000 401200 10000 440800 10000 488900 

__- __~ -_ __. ___ __zz -----.~.___.__~ .__- -- .~~ 

_. 
Tubfe 2. Eigensalues and constants for Pr = 0.01 and loo0 

Pr = 0.01 Pr=lOKl 
b Re n 42 G % a, G 4 

20363 

73035 

2.880 

122275 

170415 

1 24.17731 
2 46.54429 
3 68.99162 
4 91.51116 
5 113.98930 
6 13652980 

1 25.29953 
2 48.72858 
3 71.92987 
4 95.22695 
5 118.60790 
6 14202810 

1 27.01410 
2 51.99779 
3 76.43619 
4 100*95710 
5 12565310 
6 150.35460 

1 28.77439 
2 55.34156 
3 81.05700 
4 106~84350 
5 132.89120 
6 158.91790 

0~506509 0.536527 14.45994 0.002380 
0.159386 0.153502 27.59629 0001751 
0.076777 0.073212 39.17500 0003944 
0045710 0.042671 49.54510 0.015811 
0.030338 0.028196 64.78665 0~111750 
0.021646 0.020065 73.02547 0.044796 

0.511772 0.531962 23.98821 0.002179 
0.158844 0.159019 45.86473 0wO905 
0.079757 0076528 65.85810 O~ooD803 
0.047167 oQ44779 85.48402 0.~8~ 
0031418 0.029365 105.18070 OwO988 
0.022026 0.02073 1 124.52670 0.001426 

0.504429 
0.157097 
0.08~24 
0049280 
0032750 
OQ23304 

0.496065 
0.155295 
0.084043 
0.050982 
0.034070 
0.024328 

0.517427 
0.161956 
0~79370 
0.047148 
0031006 
0.021926 

0002230 
0~ooo870 
0~698 
OWO603 
0000602 
0000657 

0.503574 
0.163953 
0.081713 
0.049212 
0.032463 
0023016 

29.38546 
56.13826 
80.59538 

104~63000 
128.83100 
152.71130 

33.50904 
63.98510 
91.84416 

119.22030 
146.80670 
174Q4800 

0@02279 
O+?QO868 
0.000670 
0000548 
0.000506 
Om502 

0.002498 
0.002248 
OQO5021 
O-027773 
O&9435 
0@43102 

0032225 
OQO1081 ” 
OMx)848 
0.~891 
0001105 
0001680 

0.002264 
0.001028 
0.~720 
OWO642 
0000632 
0000702 

0.~2308 
0@01022 
OQOO687 
0.000577 
OooO524 
0.000523 

5.625 

1 
2 

30226 : 

5 
6 

1 
2 

65116 : 

5 
6 

25.08594 
47.32277 
69.57955 
9199697 

114.~ 
136.89560 

26.16003 
49.15878 
7209828 
95.16327 

118.33040 
141.55760 

0449889 0.523782 18.23451 0@01592 
0.165040 0.157258 33.60291 0~001022 
0.085758 0075879 48.01757 0.001514 
0.052219 0.044724 61,67214 0.003365 
0935440 0.029486 74.49123 0.011909 
0.025528 OQ21023 93.42820 0.142819 

0.449775 0.514758 24.78381 oQO153o 
0.164516 0.162450 45.57530 OQOO768 
0.087774 O-078854 65.26735 OWO742 
0.054018 oiwJ346 84.31973 O+XZO854 
0.036406 0*030519 103.39960 0@00112 
0.026113 0.021602 122.31280 Oa1854 

oQO2065 
0@01554 
0002185 
0.005523 
0@32425 
0.045725 

ow1954 
0~001099 
0@00927 
0001035 
0@01478 
0@02669 
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~.._ -__ _.- .-__- -.-__-- 
_& = 0.01 Pr=lOOO 

Am c D L-2 2” c -_I___ L-2:__ b Re n 

1 
5625 2 

3 
125267 4 

5 
6 

1 
2 

236622 : 

5 
6 

~---____-. 

1 
42945 2 

3 
4 
5 
6 

1 
2 

80016 : 

5 
6 

9,370 

1 
2 

157789 : 

5 
6 

1 
2 

231996 : 

5 
6 

- 

2865356 
53.54745 
78.21252 

102.91460 
127.79640 
152.78930 

33.43689 
61.99852 
89.98067 

I 17.84760 
1~~ 
174.43460 

-_--__--- - 
2608409 
48.45535 
70.81297 
93.29051 

115.87760 
138.48150 

27.69430 
51.12011 
74.49731 
97.95088 

121.51710 
145.16780 

0.396769 
0.162971 
0@91726 
0.058328 
0.040366 
0.029687 

0.392030 
0.163344 
oJI94370 
0.061297 
0042552 
@03i 105 

0.372042 
0.158791 
0.086417 
0.065134 
0.045795 
0.033460 

0.512191 
0.161145 
0.078031 
0.046089 
0.030512 
0.021729 

---_-- 

22.23787 
39.98038 
5703172 
73.46363 
89.53074 

104~94100 

____-- 

0~001077 
OC@O685 
0.~817 
oaO1311 
0002661 
0007770 

28.47057 0.~1059 OGO182S 
51.06734 0~596 0.~1048 
72.84718 0.000568 OWO849 
93.96866 0000652 0.000868 

11489270 OGOO802 0001094 
135.85500 0~001121 0@01679 

3 1.42485 
57.42105 
83.27494 

109.12415 
13.w9450 
161.24110 

O%IOO96 
0.166700 
0.08 1673 
0048454 
0.031992 
0022752 

0.470353 
0.172075 
0.086798 
0.051904 
0.034663 
0.024721 

37.33033 0.001081 
66.82310 0000573 
95.26581 omO49 1 

122.87460 OWO482 
150.27890 oaOO477 
177.85890 OGOO496 

34.99826 0.354984 0.446835 43.91007 0aO1099 
63.48927 0.155014 0.175169 78.35333 oaOo573 
91.71190 0.098016 0.090506 Ill.58120 oGiKJ479 

119.84646 OG68318 0.054671 143.88570 0~450 
348.11630 0.048515 0.036834 175.99190 0000418 
176.65020 0.035465 0.026397 208.32320 oaOO4Oo 

0.438576 0.493071 32.12308 o+m1559 0.~1979 
0.161767 0.167460 58.96135 0030723 0~001011 
omo353 0.083010 84.41085 OWO609 OWO723 
0.057096 OQ49314 109.07830 oaOO574 OGOO635 
0@38567 0.032754 133.88340 0000568 0000647 
a027755 0.023179 158.67630 0.~31 OGGO723 

0.416635 0.459313 41.61860 0.001619 OW2030 
0.157116 0.172983 76.18190 0.000723 0001013 
0.093993 0.088790 108.92890 O@Nl576 OWO672 
0.061790 0.053850 140.71410 oaOO499 0%)00532 
0.041965 0036267 172.75980 0.~436 0.~474 
0.030422 0.025774 204.82190 OWO416 OWO445 

0001865 
0001257 
O%H352 
0002128 
0005318 
0.027661 

0@01864 
0.000986 
OGOO697 
0.000585 
OW563 
oaxI594 

0001885 
OGOO992 
0.000672 
0~~531 
0.000477 
0.000461 

zT:.-_ .._ --: 

Table 3. E~ge~~a~ues md constants and some releaant wakes of the eige~~unct~o~~r Pr = 0.7 
____.~ _______~ ~.. ___-_. ---~ ._.____ ____--____ ____-- ___ __- 

b Re (4”h W”), n 4 G D, (IL& (4”)0 
_---- --..--__~~ 

1 12.29422 @244374 0.243016 0.033900 0~011705 
20363 -0.018893 -0*021002 2 23.61494 0%X37828 0.102117 -0031351 -0.012657 

3 33.88883 0@64358 Oafs161 o-033597 0.011811 
4 43398521 0.049049 0.051260 - 0.033068 -0~012000 
5 54.0898 1 Oa41928 0.042427 0033606 0~011808 
6 63.98431 0037162 0.037994 - 0.033433 -0.011869 

1 21.42147 0220882 0.218559 0012548 ow43 10 
73035 -@007056 -O+IO7665 2 40.92032 0.080462 ov33960 -0.011548 - 0004683 

2-880 3 5854501 0059056 0059218 0.012465 0.004339 
4 75.84360 0.043684 0044898 -0.012309 - 0004304 
5 93.27197 a035202 0.035029 0.012513 ow4322 
6 1 lo-49490 0029042 0.028930 -0.012503 - OGO4326 

_” -- 
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b Re --W.), n n, c & (ti3i (lb.)* 
_I_ 

26‘75531 0*211OQ% 0.208295 0.008472 00029m 
122275 -0@04772 -0m5152 ; 51.@4889 Otv7396 ~~70 -0@07774 -@003163 

3 72.96553 0.057293 0057364 @008410 0.002923 
;’ 116.16890 94.47098 0.034245 OQ42484 0434049 0043605 - 0*008440 WiO8305 - 0#)2913 0032960 

6 137-58940 @0283@4 0428147 - 0008438 -@a02914 

I 30.93261 0~20.5009 0*201967 ovo6552 0002241 
170415 -0W3694 -WO3975 2 58~97714 0075.512 0088632 - oaO6oO2 - 0002446 

3 82*X4569 0049809 0.049919 oaOO37 im342Q 
4 109~2850 0041797 0042874 -0006421 -0@2207 

134+mO cm33704 0~33496 om6524 om2251 
158.74340 0@27871 0027690 -Q%tI6524 -0.002251 -I__- 

30226 -0~11643 -0a4557 

65116 

5625 
125267 -0W81 - 0604x89 

236622 - O~OO2509 -0002966 

1 
2 
3 
4 

; 

: 

: 

:, 

I 
2 
3 
4 
5 
6 

: 
3 
4 

65 

15.80482 0189589 0215398 OQ28969 00O5851 
29.10876 0079778 0~103105 - Oa27159 - 0006241 
41.62592 Oa60754 0.065299 0.029784 oaO5691 
53+x%38 oa9190 0048635 -0@31051 - Orn5458 
6599565 0@39876 0039598 0.030987 0*005470 
78*20838 0.034712 0033384 -0031484 -0a5383 

22.12897 0.172553 0.199054 OJJ16173 0003315 
4@5905 1 0074302 Oax606 -0e1522g - 0%?03521 
s-b9471 1 0957121 oa61577 0@16730 0003205 
74*71628 0046418 0045595 -0017519 -0@03061 
91.61295 om7143 0036586 04117503 0003063 

108.51530 0~031451 OQ29879 -0Q17814 -0003010 

2Q*41051 0*161243 0,1866616 OW849 oQO2025 
53+3~256 0070380 Otl92116 - OflO -0m2155 
76.71229 0054759 01059023 0*010206 0001955 
98.83295 0044791 0.043761 -0ao714 -0CO1862 

121*13560 01)3S833 OtX35216 0~010689 0001866 
143*45?70 0030346 0428808 -0@10869 -Of)01835 

39m530 0.150936 0.175272 0~006006 0.001239 
71.19002 0*066805 0.087950 - 0005639 -0aO1320 

101~38650 0052606 0056720 0006233 0”Om 194 
130sB20 0@43398 0042233 -0*006558 -&?01135 
i59.87200 0034752 OQ34063 OW6537 oQm139 
189.29200 0.029422 Oa27QO8 - OW643 -Om12f 

42945 - 0007761 -04x0809 1 

s 
4 
5 
6 

800I6 -0604981 -@006753 :. 
3 
4 
5 
6 

9370 
157789 -0ao3021 -Om4oO1 : 

3 
4 

19.63342 0.137751 0.197021 01)23447 
35.18177 0067790 0~100076 - 0023073 
M‘0165? 0053737 so64539 0925.587 
64.48936 0046975 0047032 -0a28016 
78”93936 0039701 OS)37841 0.027389 
93.32502 02333478 oa31208 - 0.029034 

2569178 0.127153 O-184795 0.014722 
45.89372 0@63675 OS5471 - 0‘014502 
65.25497 0051096 0061719 0.016148 
83.97887 0.045174 Om5253 -0a7743 

102*57160 0938173 0.036230 OWi216 
121.31758 Oa3236.5 0030112 -@018411 

34.63892 0117118 0.172911 008759 
61.68753 0%X59761 ow705 - 0@08637 
87.58350 0.048730 01)59107 OOOQ664 

11260460 0043532 0043328 - 0.010665 
13744720 0036893 0.034827 O(flO955 
16251850 0.031186 0.028943 -0011044 

0003578 
-@003636 

wJ3279 
- om2995 

OW2808 
- OOO2890 

0002285 
-0aO2319 

0002083 
-0dJO1896 

0601846 
--0@01827 

OW1380 
-00013QO 

0001251 
-0+01133 

0001103 
-0.001094 
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Table 3. (continued) 

b Re (43i WA0 n 5, C” D” W3i (MO 
___ ~~__ ______. 

1 41.20603 0.111670 0.166341 0.006472 OQO1029 
231996 - OCQ2256 -0QO2951 2 73.26697 0Q57625 OQ88018 - oQO6390 -0QO1042 

3 103.94400 0047413 0.057629 OQ07165 OQO0929 
4 133.56570 0042649 0.042348 - 0.007925 - OQOO840 
5 162.96340 04336254 0.034114 OQO8144 OQO0817 
6 192.64480 OQ30621 0028394 - OQO8200 -0QOO812 

Table 4. Values of the inner and outer fully developed temperature solutions at the annulus walls 

Pr 0.01 0.7 1000 
-_ 

b Re G(RX G(R), G(R)i G(R), G(R), G(R), 
______ __-- __-__ 

20363 0.143354 -0.037779 0018893 -0QO2184 0Q01252 -0QO0001 
2,880 73035 0.133455 - OQ34407 0007056 - OQO0723 OQCQ416 -0QOOOOO 

122275 0.121309 - 0.030332 0.004772 - 0QO0465 OQOQ266 -0QOOOOO 
170415 0.110607 -0.026883 0.003694 - 0QO0348 oQOO199 -0QOOOOO 

30226 0.111770 -0.021005 0Q11643 -0QOO835 OQOQ848 -0QOOOO2 
5.625 65116 0.106367 -0.019230 0Q06638 -0QoO414 OQOO44O -0QOOOO2 

125267 0.094683 -0~016080 OQO408 1 - 0QO0235 OQOO250 -0QOOOOO 
236622 0.077065 -0.012037 OQO2509 -0QOO134 0000143 -0QOOOOO 

42945 0.086550 -0.012551 0Q07761 -0QOO345 OQOO598 -0QOOOOO 
9.370 80016 0.080512 -0.011595 0Q0498 1 - 0QOO202 oQO0354 -OQOOOOO 

157789 oQ69540 -0QO8110 0003021 -0QOO112 oQO0197 -0CQOOOO 
231996 0.060929 -0QO7120 0.002256 - oQOO079 oQO0141 - 0QOCQOO 

36311 0.030715 - OQ02428 OQO4830 - OQOO065 OQQO546 -0QOOOOO 
5oQOO 89645 0.027842 -0QO1982 OQO2690 - oQOOO3o OQQO267 -0GIOOOO 

103142 0.027126 -0QO1884 0.002453 - 0QOO026 0QO0238 -0QQOOOO 
222160 0.021970 -0QO1262 OQO1438 -0QOOO13 oQO0124 -0QOOOOO 

-~ ________ __~_ ___-- ____ _____~ 

H(R), H(R), fWi H(R), H(Rh H(R), 
---- ___ 

20363 -0.108831 0.168257 - 0Q06289 0021002 -0QOOOO4 oQ01359 
2.880 73035 -0.099541 0.151876 - OQO2086 OQ07665 - oQOOO02 OGIO444 

122275 - 0.087669 0.136049 -0QO1339 oQO5153 -0QOOOO1 OQO0283 
170415 -0.077590 0.122818 -0QO1002 0.003975 -0QOOOO1 oQO0211 

30226 -0.118407 0.158087 -0005338 0014557 - oQOOO6O 0QOO968 
5.625 65116 -0.109436 0.146226 - 0Q02338 OQO8078 -0QOOOO2 oQO0493 

125267 -0.091997 0.126711 -0QO1330 OQ04889 -0QOOOO1 OQOC278 
236622 -0Q68644 0.100182 - OQOO758 0002966 -0QOOOOl 0QO0158 

42945 -0.118844 0.149015 - 0Q03243 @010809 -0QOOOO3 0QOO709 
9.370 80016 -0.106312 0.135045 -0QO1882 0Q06753 - oQOOO02 oQO0413 

157789 -0.083754 0.112449 -0QO1052 oQO4OO1 -0QOOOOl 0QO0227 
231996 - 0.068252 0.096473 - OQO0746 0.00295 1 -0QOOOO1 0QO0161 

36311 -0.121528 0.143146 - 003342 0.011954 -0QOOOO3 OQOO830 
5oQOO 89645 -0.099153 0.122806 -0QO1504 OQO5961 -0QOOOO2 oQO0374 

103142 -0.094252 0.118430 -0QQ1332 0.005355 -0QOOOO2 0030331 
222160 -0.063065 0089684 -0QOO661 OQ02921 -0QmOO1 OQOO165 
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G(R),, If(R), and H(R), are given in Table 4 
together with some results for b = 50, 

COMPARISON WITH EXPERIMENT 

The calculated values of the Nusselt number 
for heating of the core tube for b = 2.88 and 
9.37, are compared in Fig. 6 with the experi- 
mental results for b = 2.88 and b = 9.17 given 

2x105 

IO5 

IO’ 

IO" 5x105 

Re 

FIG. 5. Relationship between r$ and the Reynolds number. 
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- Inner wall heated 
- - - Outer wall heated 

1 - - - 619.37 0 6’9.14 I 
I 
10 

, J FIG. 7. Fully developed heat transfer for radius ratio b = 50. 
70 

X/D by Quarmby [9] for air. The agreement is quite 

FIG. 6. Compar&n between theory and experiment for 
satisfactory. Experimental results for annuli 

entrant: region heat transfer. for other Prandti nmnbers are very sparse and 
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are not strictly comparable because of the 
differing boundary conditions. However, it is 
possible to make a comparison between the 
results of the present analysis for radius ratio 
6 = 50 with heating on the outer wall only and 
certain experimental results for fully developed 
heat transfer in a circular tube with a uniform 
heat flux boundary condition. 

This is shown in Fig 7 where a comparison 
is made with results for liquid metals, PF = 0.02- 
0.03 ; air, PF = 0.7 ; water, PF = 6.82 ; and ethyl 
glycol, PF = 96-105. The agreement is satis- 
factory, especially for PF = 0.7. 

Reynolds number on the results as the experi- 
ments do. The correct Reynolds number and 
radius ratio effect is predicted, however. The 
effect of radius ratio on the entrance length for 
heating at the inner wall is shown in Fig. 9 
together with results for heating at the outer wall. 
The results were obtained by cross-plotting 
from the calculated values for the chosen values of 
Reynolds number, Re = 50000, 100000 and 
150000. It may be seen that the radius ratio 
effect is much greater on the inner wall but the 
entrance length appears to become independent 
of Reynolds number for higher values. 

Theory 

- Parallel plote channel Ref 
- - Present theory for annuli 

- - -Plain tube Ref [l4] 
-.- Annulus 6=1.5 Ref [15] 

141 

Expt Ref [9] 
0 b = 2.00 
x b = 5.76 

q 3-X-b q x 
-- 

-- 2.88 x 

x 

x-_---x- 

5.62 --------_------_ 
0 O 

0 0 9.37 _--- -- 
oo 

__~b__-__------ 
-c__- - -- 

-p-z-.-___ _____- 
I.5 

I 
50 000 

I 
100000 

Re 

I I 
150000 200 000 

FIG. 8. Comparison between theory and experiment for the 
length of the entrance region. 

It is important to know the length of the 
entrance region. This may be defined as the 
distance along the duct at which the Nusselt 
number has a value 5 per cent greater than its 
fully developed value. A comparison is given in 
Fig. 8 of the present analysis and some measure- 
ments of [9] for heating on the inner wall. There 
is reasonable agreement but the theoretical 
prediction does not show as much effect of 

There is a considerable Prandtl number effect 
on the entrance length This is shown in Fig. 10 
where results for b = 5.62 are compared with the 
calculations of [4] for the parallel plate passage 
and Sparrow et al. [14] for the round tube. 
To make the comparison valid, results for 
heating the outer wall are shown. There is 
good agreement between the calculations for 
the three configurations. It may be seen that the 



effects of radius ratio and Reynolds number 
become insignificant for Prandtl numbers greater 
than about 10 and the entrance lengths are very 
short for high Prandtl numbers 

Outer wall heated 
Re 

d 150000 
e 100000 
f 50000 

I \ I 

ISI 
2 

I 
4 

I 
6 

b 

I 
. 

6 IO 

FIG. 9. Effect of radius ratio on the entrance length. 

tube 1141 

,“.,I I 10 100 

Lee’s results for the fully developed Nusselt 
number are not in agreement with the measure- 
ments of [ l] or [9]. The prediction of the entrance 
length for a radius ratio of 15 differs by about a 
factor of four from the measurements of [3] 
for b = 2.88 and from the theoretical prediction 
of the entrance length in a parallel plate channel, 
b = 1, given by [4]. Since a radius ratio of 1.5 
is not greatly different to a parallel plate channel 
this discrepancy is significant. Lee’s results may 
also be shown on Fig 10. The effect of Prandtl 
number is correctly predicted but there is poor 
agreement with the present calculations and 
those of [4] and [14]. Also Lee’s results predict 
a reversal of the Reynolds number effect at 
Pr = 10 which is not shown in the other results. 
Without lengthy calculation it is not possible 
to say exactly how the discrepancies in Lee’s 
results arise, whether from the inaccuracy of the 
description of velocity and eddy diffusivity 
or from the integral method of calculation which 
was used 

LL 
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This method is not as satisfactory as the present 
method since arbitrary axial variations of wall 
heat flux cannot be handled by the principle of 
superposition but require each to have a 
separate solution. The description of the annular 
velocity profile which Lee [15] used is not in 
agreement with the experiments of either 
Quarmby [2] or Brighton and Jones [16]. 
For example, Lee assumed that the radius of 
maximum velocity is the same in turbulent flow 
as in laminar flow and no account was taken of 
the Reynolds number and radius ratio depen- 
dence of the u+ N y+ profile. It was assumed 
that the ratio of .zH to E, is unity for Prandtl 
numbers of 10 and 0.1. 

CONCLUSIONS 

FIG. 10. Effect of Prandtl number on the entrance length. 

Recently, Lee [lS] has given a solution for 
heat transfer from the inner wall with a uniform 
heat flux. The solution was obtained using a 
boundarv laver model and integral methods. 

There is good agreement between the analysis 
and experimental results for the entrance region 
for the range of radius ratios and Reynolds 
numbers considered, for Pr = 0.7. For other 
values of Prandtl number, the lack of suitable 
experimental data precludes a proper test of the 

- entrance region solution. However, results for 
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the fully developed case for a radius ratio of 
fifty are in reasonable agreement with experi- 
ments for a plain tube. This indicates that the 
analysis and its assumptions are valid for high 
values of radius ratio and suggests that they are 
also valid for Prandtl numbers other than 0.7. 

Calculations of the thermal entrance length, 
defined as the distance required for the Nusselt 
number to reach a value 1.05 times its ultimate 
value, are in good agreement with calculated 
results for the parallel plate channel and plain 
tube given in the literature. The entrance length 
is considerably decreased for Prandtl numbers 
greater than unity. The effect of increasing the 
radius ratio is to decrease the entrance length. 
The effect of increasing the Reynolds number is 
to increase the entrance length. The Reynolds 
number effect is not very great for the higher 
radius ratios. 

From the agreement between theory and 
experiment it is considered that the solutions 
obtained for uniform heat flux are accurate and 
that they may be used to give the solution to 
practical problems in which there are arbitrary 
axial variation of the boundary conditions. 
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TRANSPORT DE CHALEUR TURBULENT DANS LA REGION D’ENTREE THERMIQUE 
DE TUYAUX ANNULAIRES CONCENTRIQUES AVEC FLUX DE CHALEUR PARIETAL 

UNIFORME 

R&auu&Le probleme du transport de chaleur turbulent dans des conduites annulaires concentriques 
est analysk dans le cas oh il y a un flux de chaleur uniforme sur chaque surface annulaire. Qn donne la 
solution pour la region dent&e thermique et le regime entitlement etabli qui peut dte &endue, grace 
au urinciue de superposition, aux cas ou il y a des variations axiales du flux de chaleur parietal sur les 
de& surkes annulaires. 

Les solutions sont donntes pour les rapports des rayons tgaux a 2,88; 5,625 ; 9,37 et 50 avec des nombres 
de Reynolds de 2OooO a 240000 et pour Pr = 401; 0,7 et 1000. Il y a un bon accord avec les rbultats 
expkimentaux pour des conduites annulaires pour Pr = 47 tandis que certains rksultats, pour un rapport 
des rayons egal a 50, sont comparables favorablement avec les rQultats pour un tube circulaire avec 

d’autres nombres de Prandtl. 
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TURBULENTER WARMEUBERGANG IM GEBIET DES THERMISCHEN EINLAUFS VON 
KONZENTRISCHEN RINGSPALTEN MIT KONSTANTER WdiRMESTROMDICHTE. 

Zusammenfassung-Das Problem des turbulenten Warmetibergangs in konzentrischen Ringspalten wird 
untersucht fur den Fall konstanter Warmestromdichte an eine der beiden Ringoberflachen. Liisungen 
werden agegeben fiir das Gebiet des thermischen Einlaufs und fiir die ausgebildete Striimung Sie kiinnen 
durch Superposition ausgedehnt werden, auf FLlle mit willkiirhcher WLrmestromverteilung an beiden 
Ringfliichen. 

Die Lijsungen gelten fti die Radienverhiiltnisse 2,88; 5,625; 9,37 und 50 bei Reynoldszahlen von 20000 
bis 240000 und Prandtlzahlen von 0,Ol; 0,7 und 1000. Fiir Pr = 0,7 ist die ubereinstimmung mit experi- 
mentellen Ergebnissen gut, fiir ein Radienverhlltnis von 50 lassen sich einige Ergebnisse such fur andere 

Prandtlzahlen sehr gut mit Werten fiir das Rohr mit Kreisquerschnitt vergleichen. 

TEIIJIOOBMEH HPH TYPBYJIEHTHOM TEYEHHB BO BXOAHOtl 
TEPMHYECKOH OBJIACTH KOHHEHTPHrIECKBX HAHAJIOB HPR 

PABHOMEPHOM TEHJIOBOM IIOTOICE HA CTEHKE 

AEHoTa4Hsr-AHanHaHpyeTc~ 3aAaqa Tennoo6tdeHa q.m Typ6yneHTHOM TeqeHuEI B KOHqeHT- 

pH=IeCKHXKaHaJlaXIIpUpaBHOMepHOMTeIlJIOBOM IIOTOKeHaKaJKJ&IiiKOJIb~eBOtiIIOBepXHOCTlf. 

nOJIyYeH0 pelueH&ie AJIH BXOfiHOti TepMKqeCK0i-i o6nacrn II IIOJIHOCTbIO pa3BHTOI'O Te9eHMR, 
KOTOpOe MeTO,I(OM CyIlepllOaHIJHH MOFKHO IipHMeHHTb K CJly'#aRM IlpOH3BOJlbHblX HaMeHeHHti 

TeIIJlOBOrO IIOTOKa HaCTeHKe BAOJIb OCIl Ha 06oax KOJIblleBbIX IlOBepXHOCTHX. 

PeureHm nonysem AJIR oTHoUremd pan&iycoB 2,88; 5,625; 9,37 H .%) npa wicnax 

Petnonbgca OT 20 000 go 240 000 n npn Pr = 0,Ol; 0,7 H 1000. HMeeTcn xoponree COOT- 

BeTCTBHe C 3KCIIepHMeHTaJIbHPMki pe3yJIbTaTaMH RJIH KaHaJIOB IIpU Pi. = 0,7. PeayJIbTaTbI 

AJIJI OTHOIIIeHHR pa@fyCOB,paBHOM 50, CpaBHHBaIOTCR C pe3yJIbTaTaMH RiUi KpyrJIOi% Tpy6bI 
np~ ~pyrsix micnax npaKATax. 


